己知圆,及,: ①是轴上动点,当最大时,点坐标为 ②过任作一条直线,与圆交于,则 ③过任作一条直线,与圆交于,则成立 ④任作一条直线与圆交于,则仍有 上述说法正确的是 .
已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以 D 1 为球心, 5 为半径的球面与侧面BCC1B1的交线长为________.
某中学开展劳动实习,学生加工制作零件,零件的截面如图所示. O为圆孔及轮廓圆弧 AB所在圆的圆心, A是圆弧 AB与直线 AG的切点, B是圆弧 AB与直线 BC的切点,四边形 DEFG为矩形, BC⊥ DG,垂足为 C,tan∠ ODC= 3 5 , BH ∥ DG , EF=12 cm, DE=2 cm, A到直线 DE和 EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm 2.
将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
斜率为 3 的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则 AB =________.
设有下列四个命题:
p 1:两两相交且不过同一点的三条直线必在同一平面内.
p 2:过空间中任意三点有且仅有一个平面.
p 3:若空间两条直线不相交,则这两条直线平行.
p 4:若直线 l ⊂ 平面 α,直线 m⊥平面 α,则 m⊥ l.
则下述命题中所有真命题的序号是__________.
① p 1 ∧ p 4 ② p 1 ∧ p 2 ③ ¬ p 2 ∨ p 3 ④ ¬ p 3 ∨ ¬ p 4