(本小题满分12分)为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数及60分以上的学生的平均分;(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取两名学生,求这两名学生成绩之差的绝对值不大于10的概率
. (本小题满分12分) 如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,已知AB=,∠APB=∠ADB=60° (Ⅰ)证明:平面PAC⊥平面PBD; (Ⅱ)求PH与平面PAD所成的角的大小.
(本小题满分12分) 某电视台为了宣传某沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对18—48岁的人群随机抽取n人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:
(Ⅰ)分别求出n,a,x的值; (Ⅱ)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在[38,48〕内回答正确的得奖金200元,年龄在[18,28〕内回答正确的得奖金100元。主持人随机请一家庭的两个成员(父亲46岁,孩子21岁)回答正确,求该家庭获得奖金的分布列及数学期望(两人回答问题正确与否相互独立)。
(本小题满分12分) 已知函数和. (1) 设是的一个极大值点,是的一个极小值点,求的最小值; (2) 若,求的值.
口袋内装有3个白球和2个黑球,这5个球除颜色外完全相同.每次从袋中随机地取出一个,连续取出2个球: ⑴列出所有等可能的结果; ⑵求取出的2个球不全是白球的概率.
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
(1)求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?