在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△与△面积之和的最大值,并简要说明理由.
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线与BC边相交于D点.(1)求点D的坐标;(2)若抛物线经过点A,求此抛物线的表达式及对称轴;(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标.(4)当(3)中符合条件的△POM面积最大时,过点O的直线将其面积分为∶两部分,请直接写出直线的解析式
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,湖州市决定从2010年12月1日起,在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼.(1)满足条件的建造方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.
如图,以线段为直径的⊙交线段于点,点是弧AE的中点,交于点,°,,.(1)求的度数;(2)求证:BC是⊙的切线;(3)求MD的长度.
如图,是四边形的对角线上两点,.求证:(1);(2)四边形是平行四边形.
如图,已知线段及∠O.(1)只用直尺和圆规,求作△ABC,使BC,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法);(2)在△ABC中作BC的中垂线分别交AB、BC于点E、F,如果∠B=30°,求△BEF与△ABC的面积之比.