(本小题满分12分)已知F是抛物线C:的焦点,点在抛物线C上,且·(1)求p,t的值;(2)设O为坐标原点,抛物线C上是否存在点A(不考虑点A为C的顶点),使得过点O作线段OA的垂线与抛物线C交于点B,直线AB交x轴、y轴于点D、E,表示△OAB的面积,表示△ODE的面积,满足?若存在,求点A的坐标;若不存在,说明理由.
已知为直线(为常数)及所围成的图形的面积,为直线(为常数)及所围成的图形的面积,(如图) (1)当时,求的值。 (2)若,求的最小值。
已知函数 (1)求函数在区间上的最大值和最小值,(是自然对数的底数), (2)求证:在区间上,函数的图像在函数的图像的下方。
已知有如下等式:当时,试猜想的值,并用数学归纳法给予证明。
将4个编号为1,2,3,4的不同小球全部放入4个编号为1,2,3,4的4个不同盒子中,求: (1)每盒至少一个球,有多少种放法? (2)恰好有一个空盒,有多少种放法? (3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种放法? (4)把已知中4个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种放法?
已知复数,当实数m取何值时,复数是: (1)零;(2)纯虚数;(3)