(本小题满分12分)(解答过程写在试卷上无效)已知数列的首项,,前项和为,且,设,(1)设,记,试比较与的大小,并说明理由;(2)若数列满足,在每两个与之间都插入个,使得数列变成了一个新的数列,试问:是否存在正整数,使得数列的前项的和?如果存在,求出的值;如果不存在,说明理由.
已知函数。(1)求的定义域及最小正周期;(2)求的单调递减区间.
已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)设.如果对任意,,求的取值范围.
在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
已知数列﹛﹜满足:.(Ⅰ)求数列﹛﹜的通项公式;(II)设,求
如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(Ⅰ)三角形的面积;(II)三棱锥的体积