(本小题满分12分)(解答过程写在试卷上无效)已知数列的首项,,前项和为,且,设,(1)设,记,试比较与的大小,并说明理由;(2)若数列满足,在每两个与之间都插入个,使得数列变成了一个新的数列,试问:是否存在正整数,使得数列的前项的和?如果存在,求出的值;如果不存在,说明理由.
(本小题满分10分)选修4-l:几何证明选讲在ABC中,D是AB边上一点,ACD的外接圆交BC于点E,AB= 2BE (1)求证:BC= 2BD; (2)若CD平分ACB,且AC =2,EC =1,求BD的长
己知函数,其中 (1)求函数的单调区间; (2)若直线x-y-l=0是曲线y=的切线,求实数的值; (3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)
设数列满足 (1)求数列的通项公式; (2)令,求数列的前n项和
如图,直三棱柱中,D,E分别是AB,的中点 (1)证明:; (2)设,求三棱锥的体积
对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下: (1)求出表中M,p及图中a的值; (2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率