如图,反比例函数在第一象限的图象经过矩形OABC对角线的交点E,与BC交于点D,若点B的坐标为(6,4).(1)求E点的坐标及k的值.(2)求△OCD的面积.
青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(,结果精确到个位)
如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
已知圆锥的底面直径是8,母线长是16,求它的侧面展开图的圆心角与圆锥的全面积。
如图所示,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧), 已知点坐标为(,).(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点,如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.
如图所示,⊙的直径,和是它的两条切线,为射线上的动点(不与重合),切⊙于,交于,设.(1)求与的函数关系式;(2)若⊙与⊙外切,且⊙分别与相切于点,求为何值时⊙半径为1.