问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.
如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F. (1)求证:AD=CE; (2)求∠DFC的度数.
为了迎接2015宿迁市“市长杯”阳光体育联赛,丰富学生的课外活动,我县某校团委对部分学生进行了一次问卷调查“你最喜欢的体育活动是什么?”(每人限选一项).根据收集到的数据,绘制如图统计图(不完整):请根据图中提供的信息,完成下列问题: (1)在这次问卷调查中,一共抽查了名学生; (2)请将条形统计图补充完整; (3)若全校有1860名学生,则全校学生中,最喜欢“球类”活动学生约有多少人?
化简:,并在﹣3≤x≤2中选取一个你喜欢的整数x的值代入计算.
阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp-x1=x2-xp,得xp=,同理yp=,所以AB的中点坐标为(,).由勾股定理得AB2=,所以A、B两点间的距离公式为AB=. 注:上述公式对A、B在平面直角坐标系中其它位置也成立. 解答下列问题: 如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C. (1)求A、B两点的坐标及C点的坐标; (2)连结AB、AC,求证△ABC为直角三角形; (3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.
用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题: 探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P. (1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长; (2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数. 探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.