问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.
如图,AB∥CD,∠A=45°, ∠C=∠E,求∠C的度数.
如图,已知∠ACD=1500, ∠A=2∠B,求∠ B的度数.
已知一个多边形,它的内角和等 于外角和的2倍,求这个多边形的边数.
月球距离地球大约 3.84×105千米, 一架飞机的速度约为 8×102 千米/时. 如果乘坐此飞机飞行这么远的距离, 大约需要多少时间 ?
如图,在平行四边形ABCD的对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?