问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.
某镇正在建造的文化广场工地上,有两种铺设广场地面的材料,一种是长为a cm,宽为b cm的矩形板材(如图1),另一种是边长为c cm的正方形地砖(如图2) (1)用几块如图2所示的正方形地砖能拼出一个新的正方形?画出草图,并写出新正方形的面积(写出一个符合条件的答案即可); (2)用如图1所示的四块矩形板材铺成如图3的大正方形或如图4的大矩形, 中间分别空出一个小正方形和小矩形(即图中阴影部分); ①请用含a、b的代数式分别表示图3和图4中阴影部分的面积; ②试比较图3和图4中阴影部分的面积哪个大?大多少?
在中,,,直线经过点,且于,于. (1)当直线绕点旋转到图1的位置时,求证: ①≌; ②; (2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
B,C,D三点在一条直线上,△ABC和△ECD是等边三角形.求证:BE=AD.
如图所示,已知∠1=∠2,∠C=∠D,求证:
先化简,再求值: 2(a-3)(a+2)-(3+a)(3-a)-3(a-1)2其中a=-2