我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.
已知:如图,AB=CD,∠A=∠D,点M是AD的中点.求证:∠ABC=∠DCB.
如图所示,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)求出格点△ABC(顶点均在格点上)的面积;(2)画出格点△ABC关于直线DE对称的△A1B1C1;(3)在DE上画出点Q,使△QAB的周长最小.
先化简,再求值,其中,.