已知f(x)=,x∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;(2)是否存在实数a,b,使f(x)同时满足下列两个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.
某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为3200元,面粉的保管等其它费用为平均每吨每天3元,购买面粉每次需要支付运费900元。(Ⅰ)求该厂每隔多少天购买一次面粉,才能使平均每天支付的总费用最少?最少费用为多少?(Ⅱ)某提供面粉的公司规定:当一次购买面粉不少于120吨时,价格可享受9.5折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
制定投资计划时,不仅要考虑可能获得的赢利,而且要考虑可能出现的亏损。某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大赢利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的赢利最大?
已知中,为边上的一点,,,,求.
已知数列为等差数列,其中,恰为和的等比中项。(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前n项和。
中,、、所对的边分别为、、(Ⅰ)若、、,求. (Ⅱ)若,,求、。