(本小题满分12分)函数是定义在上的奇函数,且.(1)求实数,并确定函数的解析式;(2)用定义证明在上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值.(本小问不需说明理由)
对于集合M,定义函数对于两个集合M,N,定义集合. 已知A={2,4,6,8,10},B={1,2,4,8,16}. (Ⅰ)写出和的值,并用列举法写出集合; (Ⅱ)用Card(M)表示有限集合M所含元素的个数. (ⅰ)求证:当取得最小值时,2∈M; (ⅱ)求的最小值.
已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
已知f (x)是R上的偶函数,且在(0,+ )上单调递增,并且f (x)<0对一切成立,试判断在(-,0)上的单调性,并证明你的结论.
证明:函数f(x)=在(-2,+¥)上是增函数.
已知A=,B=. (Ⅰ)若,求的取值范围; (Ⅱ)若,求的取值范围.