已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.
选修4—1:矩阵与变换已知二阶矩阵A有特征值及对应的一个特征向量和特征值及对应的一个特征向量,试求矩阵A.
.(本小题满分16分)数列中,,,且.(1)求及的通项公式;(2)设是中的任意一项,是否存在,使成等比数列?如存在,试分别写出和关于的一个表达式,并给出证明;(3)证明:对一切,.
.(本小题满分16分)函数,其中为常数.(1)证明:对任意,函数图像恒过定点;(2)当时,不等式在上有解,求实数的取值范围;(3)若对任意时,函数在定义域上恒单调递增,求的最小值.
.(本小题满分16分)已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;(2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.
.(本小题满分14分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收 益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现有两个奖励方案的函数模型:(1);(2).试问这两个函数模型是否符合该公司要求,并说明理由.