阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式:
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20,
读完这段材料,请你思考后回答:
(1)1×2+2×3+…+100×101= ;
(2)1×2+2×3+3×4+…+n×(n+1)= ;
(3)1×2×3+2×3×4+…+n(n+1)(n+2)= .
(只需写出结果,不必写中间的过程)