(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的长半轴这半径的圆与直线相切.(1)求椭圆标准方程;(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
(本小题满分12分)某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示. (1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率; (2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
【改编】已知函数,,,求的最小正周期,并求在区间上的单调性.
已知函数,其中常数. (1)求的单调增区间与单调减区间; (2)若存在极值且有唯一零点,求的取值范围及不超过的最大整数.
(本小题满分13分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点. (1)求椭圆的方程; (2)求的取值范围.
(本小题满分14分)已知函数的导函数. (1)若,不等式恒成立,求a的取值范围; (2)解关于x的方程; (3)设函数,求时的最小值.