(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的长半轴这半径的圆与直线相切.(1)求椭圆标准方程;(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
过点Q 作圆C:x2+y2=r2()的切线,切点为D,且QD=4. (1)求r的值; (2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求的最小值(O为坐标原点).
已知数列的首项为=3,通项与前n项和之间满足2=· (n≥2)。 (1)求证:是等差数列,并求公差; (2)求数列的通项公式。
设△ABC的内角A,B,C的对边分别为a,b,c.已知,求: (Ⅰ)A的大小; (Ⅱ)若,求面积的最大值.
如图,已知三棱柱ABC-A1B1C1中,侧棱A A1⊥底面ABC AB⊥BC; (Ⅰ)求证:平面A1BC⊥侧面A1ABB1. (Ⅱ)若,直线AC与平面A1BC所成的角为, 求AB的长。