一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:,,,,,.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
2010年世博会于5月1日在中国上海隆重开幕,甲、乙、丙三人打算利用周六去游览,由于时间有限,三人商定在已圈定的10个国家馆中各自随机选择一个国家馆游览(选择每个国家馆的可能性相同).(Ⅰ)求甲、乙、丙三人同时游览同一个国家馆的概率;(Ⅱ)求甲、乙、丙三人中至少有两人同时游览同一个国家馆的概率.
已知为的三内角,且其对边分别为若且.(Ⅰ)求角;(Ⅱ)若的面积为求.
定义,(Ⅰ)令函数,过坐标原点O作曲线C:的切线,切点为P(n>0),设曲线C与及y轴围成图形的面积为S,求S的值。(Ⅱ)令函数,讨论函数是否有极值,如果有,说明是极大值还是极小值。(Ⅲ)证明:当
如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.(I)求证:;(Ⅱ)求证:平面MAP⊥平面SAC;( Ⅲ)求锐二面角M—AB—C的大小的余弦值;
3个同学分别从a,b,c,d四门校本课程中任选其中一门,每个同学选哪一门互不影响;(I)求3个同学选择3门不同课程的概率;(II)求恰有2门课程没有被选择的概率;(Ⅲ)求选择课程a的同学个数的分布列及数学期望.