如图,已知直线l1∥l2,直线l3和直线l1、l2交于C、D两点,点P在直线CD上. (1)试写出图1中∠APB、∠PAC、∠PBD之间的关系,并说明理由; (2)如果P点在C、D之间运动时,∠APB,∠PAC,∠PBD之间的关系会发生变化吗? 答: .(填发生或不发生); (3)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2、图3),试分别写出∠APB,∠PAC,∠PBD之间的关系,并说明理由.
政府将要在某学校大楼前修一座大桥.如图,宋老师测得大楼的高是20米,大楼的底部 D 处与将要修的大桥 BC 位于同一水平线上,宋老师又上到楼顶 A 处测得 B 和 C 的俯角 ∠ EAB , ∠ EAC 分别为 67 ° 和 22 ° ,宋老师说现在我能算出将要修的大桥 BC 的长了.同学们:你知道宋老师是怎么算的吗?请写出计算过程(结果精确到0.1米).
其中 sin 67 ° ≈ 12 13 , cos 67 ° ≈ 5 13 , tan 67 ° ≈ 12 5 , sin 22 ° ≈ 3 8 , cos 22 ° ≈ 15 16 , tan 22 ° ≈ 2 5
先化简,再求值: 1 x + 2 x + 6 x 2 - 4 x + 4 ⋅ x - 2 x 2 + 3 x ,其中 x = 2 + 2 .
计算: ( 3 - π ) 0 - 12 + ( 1 3 ) - 2 + 4 sin 60 ° - ( - 1 ) .
在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 ( 1 , 1 ) , ( 2021 , 2021 ) … 都是"雁点".
(1)求函数 y = 4 x 图象上的"雁点"坐标;
(2)若抛物线 y = a x 2 + 5 x + c 上有且只有一个"雁点" E ,该抛物线与 x 轴交于 M 、 N 两点(点 M 在点 N 的左侧).当 a > 1 时.
①求 c 的取值范围;
②求 ∠ EMN 的度数;
(3)如图,抛物线 y = - x 2 + 2 x + 3 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧), P 是抛物线 y = - x 2 + 2 x + 3 上一点,连接 BP ,以点 P 为直角顶点,构造等腰 Rt Δ BPC ,是否存在点 P ,使点 C 恰好为"雁点"?若存在,求出点 P 的坐标;若不存在,请说明理由.
如图, ΔOAB 的顶点坐标分别为 O ( 0 , 0 ) , A ( 3 , 4 ) , B ( 6 , 0 ) ,动点 P 、 Q 同时从点 O 出发,分别沿 x 轴正方向和 y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 P 到达点 B 时点 P 、 Q 同时停止运动.过点 Q 作 MN / / OB 分别交 AO 、 AB 于点 M 、 N ,连接 PM 、 PN .设运动时间为 t (秒 ) .
(1)求点 M 的坐标(用含 t 的式子表示);
(2)求四边形 MNBP 面积的最大值或最小值;
(3)是否存在这样的直线 l ,总能平分四边形 MNBP 的面积?如果存在,请求出直线 l 的解析式;如果不存在,请说明理由;
(4)连接 AP ,当 ∠ OAP = ∠ BPN 时,求点 N 到 OA 的距离.