(本小题满分13分)如图,椭圆()经过点,离心率.(1)求椭圆的方程;(2)设直线与椭圆交于,两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本题12分)已知数列的前项和,且是和1的等差中项。 (1)求数列与的通项公式; (2)若,求; (3)若是否存在,使?说明理由。
(本题12分)已知命题关于的方程有负根;命题不等式的解集为,若或是真命题,且是假命题,求实数的范围。
(本小题12分) 已知, (1)判断的奇偶性并用定义证明; (2)当时,总有成立,求的取值范围.
(本小题8分) 已知集合A={x|1-a<x<1+a},B={x|-1<x<7},若A∩B=A,求a的取值范围.
(本小题8分) 设函数是定义域在的函数,且,对于任意的实数,都有,当>0时,. (1)求的值; (2)判断函数在的单调性并用定义证明; (3)若,解不等式.