(本小题满分14分)在平面直角坐标系xOy中,如图,已知椭圆E: (a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B1、B2.设直线A1B1的倾斜角的正弦值为,圆C与以线段OA2为直径的圆关于直线A1B1对称. (1)求椭圆E的离心率; (2)判断直线A1B1与圆C的位置关系,并说明理由; (3)若圆C的面积为π,求圆C的方程.
在直角坐标系中,点P到两点的距离之和等于4,设点P的轨迹为,直线与C交于两点. (1)写出曲线的方程; (2)若,求的值.
已知椭圆的中心在原点,左焦点为,右顶点为,设点. (1)求该椭圆的标准方程; (2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;
.已知是函数的一个极值点. (1)求; (2)求函数的单调区间.
从4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加某项服务工作. (1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率; (2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.
对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?