如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.
如图是某住宅区的两幢楼,它们的高满足AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况,已知太阳光线与水平线的夹角为30°. (1)求甲楼在乙楼上的影子有多高? (2)如果甲楼刚好不影响乙楼采光,那么两楼间的距离约是多少? (以上结果均精确到0.1m.参考数据:)
如图是某工件的三视图,求此工件的全面积.
为了响应某市人民政府“形象重于生命”的号召,在甲建筑物上从点A到点E挂一长为30米的宣传条幅.如图所示,在乙建筑物的顶点D处测得条幅顶端点A的仰角为45°,测得条幅底端点E的俯角为30°,求底部不能直接到达的甲、乙两建筑物之间的水平距离BC.(精确到1米)
某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.如图,当飞机到达距离海面3000米的高空C处时,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°.请问:此时渔政船和渔船相距多远?(结果保留根号)
如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角仪. (1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示); (2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测角仪高度忽略不计).