如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.
用计算器求下列各式的值: (1)sin20°; (2)cos38°; (3)tan10°; (4)tan80°; (5)cos27°51′;(6)tan56°17′35″; (7)sin75°31′12″; (8)3sin29°.
如图,点A的坐标是(0.5,0),现在点A绕着点O按逆时针方向旋转, 每秒钟旋转30°,同时点A离开O点的距离以每秒0.5个单位的速度在增大,当A点第11 秒钟时到达图中的P点处,求P点的坐标.
某学生站在公园湖边的M处,测得湖心亭A位于北偏东30°方向上,又测得游船码头B位于南偏东60°方向上.现有一艘游船从湖心亭A 处沿正南方向航行返回游船码头,已知M处与AB的距离MN=0.7千米,求湖心亭与游船码头B的距离(精确到0.1千米).
要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=,∠ABC=" 30" °∴tan30°=.在此图的基础上,通过添加适当的辅助线,可求出tan15°的值,请简要写出你添加的辅助线和求出的tan15°的值.
如图,有一个同学用一个含有30°角的直角三角板估测他们学校的旗杆AB 的高度,他将30°的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,求旗杆AB的高度(精确到0.1米).