(本小题满分12分)如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤的图象与y轴交于点(0,1). (Ⅰ)求φ的值; (Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
已知等差数列的公差大于,且是方程的两根,数列的前项的和为,且. (1)求数列,的通项公式; (2) 记,求数列的前项和
圆过点,圆心在上,并与直线相切,求该圆的方程。
已知直线在轴上截距相等,且到点的距离等于,求直线的方程.
已知数列的首项,,. (1)求的通项公式; (2)证明:对任意的,,; (3)证明:.
如图,设抛物线方程为直线上任意一点,过M引抛物线的切线,切点分别为A,B。 (1)求证:A,M,B三点的横坐标成等差数列; (2)已知当M点的坐标为时,,求此时抛物线的方程; (3)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.