(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点, (1)求证:MN∥平面AA1C1C; (2)若AC=AA1,求证:MN⊥平面A1BC.
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE. (1)求证:AB∥平面CDE; (2)求证:平面ABCD⊥平面ADE.
如图,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点. (1)求证:DE∥平面PBC; (2)求证:DE⊥平面PAB.
设椭圆M:=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若=2(其中O为坐标原点). (1)求椭圆M的方程; (2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.
已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等. (1)求椭圆E的方程; (2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.