某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率.(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
已知直线(为参数)和圆; (1)时,证明直线与圆总相交; (2)直线被圆截得弦长最短,求此弦长并求此时的值.
在中,. (1)求; (2)若,求的最大值,并求此时角的大小.
已知函数对任意实数,恒有,且当时,,又. (1)判断的奇偶性; (2)求证:是上的减函数; (3)求在区间上的值域; (4)若对任意的,不等式恒成立,求的取值范围.
已知一四棱锥的三视图如下,是侧棱上的动点. (Ⅰ)求四棱锥的体积; (Ⅱ)是否不论点在何位置,都有?证明你的结论.
设集合,. (1)若,求实数的值; (2)若,求实数的取值范围.