某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率.(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
(本小题满分12分)已知椭圆E的两个焦点分别为和,离心率. (1)求椭圆E的方程; (2)设直线与椭圆E交于A、B两点,线段AB的垂直平分线交x轴于点T,当m变化时,求△TAB面积的最大值.
(本小题满分12分)已知函数. (1)当时,求曲线在处的切线方程; (2)设函数,求函数的单调区间.
(本小题满分12分)在四棱柱中,,底面为菱形,,已知. (1)求证:平面平面; (2)求点到平面的距离.
(本小题满分12分)设向量,其中,,已知函数的最小正周期为. (1)求的对称中心; (2)若是关于的方程的根,且,求的值.
(本小题满分10分)已知集合. (1)若,求出实数的值; (2)若命题命题且是的充分不必要条件,求实数的取值范围.