(本小题满分12分)已知圆C1:x2+y2=r2截直线x+y-=0所得的弦长为.抛物线C2:x2=2py(p>0)的焦点在圆C1上.(1)求抛物线C2的方程;(2)过点A(-1,0)的直线l与抛物线C2交于B,C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程.
.(本小题满分14分)如图,在边长为10的正三角形纸片ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形纸片后,顶点A正好落在边BC上(设为P),在这种情况下,求AD的最小值.
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面PAB;(3)求三棱锥P-DEF的体积.
(本小题满分14分)已知点A(3,0),B(0,3),C(,),∈.(1)若=,求角的值;(2)若=-1,求的值.
(本小题满分16分)已知函数的导数是.(1)求时,在x=1处的切线方程。(2)当时,求证:对于任意的两个不等的正数,有;(3)对于任意的两个不等的正数,若恒成立,求的取值范围.
(本小题满分16分)已知数列﹛an﹜中,a2=p(p是不等于0的常数),Sn为数列﹛an﹜的前n项和,若对任意的正整数n都有Sn=.(1)证明:数列﹛an﹜为等差数列;(2)记bn=+,求数列﹛bn﹜的前n项和Tn;(3)记cn=Tn-2n,是否存在正整数m,使得当n>m时,恒有cn∈(,3)?若存在,证明你的结论,并给出一个具体的m值;若不存在,请说明理由。