(本小题满分12分)已知圆C1:x2+y2=r2截直线x+y-=0所得的弦长为.抛物线C2:x2=2py(p>0)的焦点在圆C1上.(1)求抛物线C2的方程;(2)过点A(-1,0)的直线l与抛物线C2交于B,C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程.
已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.
(1)△ABC中,a=8,B=60°,C=75°,求b; (2)△ABC中,B=30°,b=4,c=8,求C、A、a.
△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2-a2+bc=0. (1)求角A的大小; (2)若a=,求bc的最大值; (3)求的值.
在△ABC中,已知a=,b=,B=45°,求A、C和c.
设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m的夹角.