如图,三棱柱中,⊥面,,,为的中点.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)在侧棱上是否存在点,使得?请证明你的结论.
(本小题满分14分) 已知数列满足: (1)求的值; (2)求证:数列是等比数列; (3)令(),如果对任意,都有,求实数的取值范围.
(本小题满分14分) 已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点. (1)求实数a的值; (2)求函数f(x)的单调区间; (3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
(本小题满分12分) 如图某市现有自市中心O通往正西和北偏东30°方向的两条主要公路,为了解决该市交通拥挤问题,市政府决定修建一条环城公路.分别在通往正西和北偏东30°方向的公路上选用A、B两点,使环城公路在A、B间为直线段,要求AB路段与市中心O的距离为10 km,且使A、B间的距离|AB|最小.请你确定A、B两点的最佳位置.
(本小题满分12分) 如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是 坐标原点,,. (1)若,求的值; (2)设函数,求的值域.
(本小题满分14分)已知二次函数的图像过点,且,. (1)若数列满足,且,求数列的通项公式; (2)若数列满足: ,,当时, 求证:①②