如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项). (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 . (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
如图,E、F是四边形ABCD的对角线AC上两点,AE=CF,DF∥BE,DF=BE.(1)求证:四边形ABCD是平行四边形;(2)若AC平分∠BAD,求证:▱ABCD为菱形.
解不等式组:.
化简:
如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy. (1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= ,d(∠xOy,B)= . (2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形. (3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0). ①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值; ②在图4中,抛物线y=-x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.