如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式及顶点坐标;(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.
解方程组:
解方程:
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线与BC边相交于D点. (1)求点D的坐标; (2)若抛物线经过点A,求此抛物线的表达式及对称轴; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标. (4)当(3)中符合条件的△POM面积最大时,过点O的直线将其面积分为∶两部分,请直接写出直线的解析式
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,湖州市决定从2010年12月1日起,在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼. (1)满足条件的建造方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.
如图,以线段为直径的⊙交线段于点,点是弧AE的中点,交于点,°,,. (1)求的度数; (2)求证:BC是⊙的切线; (3)求MD的长度.