如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于 ;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 .
计算:(1) (2) (3) (4)
已知四边形ABCD中,AB∥CD,∠A=∠D=90°,AD=CD=4,AB=7.现有M、N两点同时以相同的速度从A点出发,点M沿A—B—C-D方向前进,点N沿A—D—C-B方向前进,直到两点相遇时停止.设点M前进的路程为,△AMN的面积为.(1)试确定△AMN存在时,路程的取值范围.(2)请你求出面积S关于路程的函数.(3)当点M前进的路程为多少时,△AMN的面积最大?最大是多少?
如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=8,求⊙O的半径.
A、B两位高尔夫球运动员10轮比赛成绩如下(单位:杆):A运动员:73,73,74,75,75,76,76,77,79,79;B运动员:75,75,75,75,76,76,76,77,77,77.(1)计算两位运动员成绩的平均数;(2)计算两位运动员成绩的极差;(3)你认为谁是较优秀的运动员?谁是较稳定的运动员?简述理由.
经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价(元)与日销售量y(件)之间关系为y=,而日销售利润P(元)与日销售单价(元)之间的关系为P=.当日销售单价为多少时,每日获得利润48元,且保证日销售量不低于10件?