如图,抛物线 y = x 2 + b x + c 与 x 轴交于 A ( ﹣ 1 , 0 ) , B ( 3 , 0 ) 两点,顶点 M 关于 x 轴的对称点是 M ′ . (1)求抛物线的解析式; (2)若直线 A M ′ 与此抛物线的另一个交点为 C ,求 △ C A B 的面积; (3)是否存在过 A , B 两点的抛物线,其顶点 P 关于 x 轴的对称点为 Q ,使得四边形 A P B Q 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.
探究题:先观察下列等式,再回答问题 ①; ②; ③; ④你判断完以上各题之后,发现了什么规律?请用含有n的式子将规律表示出来,并注明n的取值范围请用数学知识说明你所写式子的正确性.
(2x-1)2-3=0
正方形ABCD中,点P是AD上的一动点(与点D、点A不重合),DE⊥CP,垂足为E,EF⊥BE与DC交于点F.求证:△DEF∽△CEB;当点P运动到DA的中点时,求证:点F为DC的中点.
在图11的方格纸中,△OAB的顶点坐标分别为O(0,0)、A(-2,-1)、B(-1,-3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.在图中标出位似中心P的位置,并写出点P及点B的对应点B1的坐标;以原点O为位似中心,在位似中心的同侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1. 并写出点B的对应点B2的坐标;△OAB内部一点M的坐标为(a,b),写出M在△OA2B2中的对应点M2的坐标判断△OA2B2能否看作是由△O1A1B1经过某种变换后得到的图形,若是,请指出是怎样变换得到的(直接写答案)
如图10,一艘轮船从离A观察站的正北海里处的B港出发向东航行,观察站第一次测得该船在A地北偏东30°的C处;半小时后,又测得该船在A地的北偏东60°的D处,求此船的速度.