如图,抛物线(≠0)与轴交于A(-4,0),B(2,0),与轴交与点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(解题用图见答题卡) (3)以AB为直径作⊙M,直线经过点E(-1,-5),并且与⊙M相切,求该直线的解析式.(解题用图见答题卡)
如图,小亮晚上在路灯下散步,已知灯杆OA=6.4m,他从灯杆底部的点O处沿直线前进9m到点D时,其影长DF=3m,当他继续前进到达点F时,其影子是变长还是变短?变化量为多少?
已知关于的一元二次方程有两个实数根和. (1)求实数的取值范围; (2)当时,求的值.
解下列方程(每小题3分,共9分) (1) (2)(x+3)2=2x+5 (3)(2x+1)(x-3)=-4
如图所示,已知四边形ABCD中,CD=BC,点E是BC上一点,连接DE,CF平分∠BCD,交DE于点F,连接BF,并延长交CD于点G.找出图中所有全等三角形并选择其中一个证明.
已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点. (1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG; (2)直线AH垂直于直线CE,垂足为点 H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.