某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为 人,扇形统计图中“良好”所对应的圆心角的度数为 ;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.
如图,抛物线y=-x2+bx+c与x轴交于点A(1,0)、C,交y轴于点B,对称轴x=-1与x轴交于点D. (1)求该抛物线的解析式和B、C点的坐标; (2)设点P(x,y)是第二象限内该抛物线上的一个动点,△PBD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围; (3)点G在x轴负半轴上,且∠GAB=∠GBA,求G的坐标; (4)若此抛物线上有一点Q,满足∠QCA=∠ABO,若存在,求直线QC的解析式;若不存在,试说明理由.
如图,BC是半⊙O的直径,点P是半圆弧的中点,点A是弧BP的中点,AD⊥BC于D,连结AB、PB、AC,BP分别与AD、AC相交于点E、F. (1)BE与EF相等吗?并说明理由; (2)小李通过操作发现CF=2AB,请问小李的发现是否正确,若正确,请说明理由;若不正确,请写出CF与AB正确的关系式. (3)求的值.
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4). (1)直接写出A、B、D三点的坐标; (2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.
如图,矩形ABCD中,对角线AC、BD交于点O,DE∥AC,CE∥BD。 (1)试判断四边形OCED是何种特殊四边形,并加以证明. (2)若∠OAD=300,F、G分别在OD、DE上,OF=DG,连结CF、CG、FG, 判断△CFG形状,并加以证明.
如图,某人在D处测得山顶C的仰角为37o,向前走200米来到山脚A处,测得山坡AC的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,参考数据:).