如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米): +8、-9、+4、-7、-2、-10、+11、-3、+7、-5. (1)收工时,检修工在A地的哪边?距A地多远? (2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?
若=2,b=-3,c是最大的负整数,求a+b-c的值.
画出数轴并表示下列有理数: 1.5, -2 , -2.5, 0,
已知:如图,CD⊥AB于D,BE⊥AC于E,∠1=∠2.求证:OB=OC.
如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.