如图,已知直线∥,、和、分别交于点、、、,点 在直线或上且不与点、、、重合.记,,.(1)若点在图(1)位置时,求证:;(2)若点在图(2)位置时,请直接写出、、之间的关系;(3)若点在图(3)位置时,写出、、之间的关系并给予证明.
如图,在▱ABCD中,BE=DF.求证:AE=CF.
计算:(x-3)2-(1-x)•(3-x)-2.
如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.
如图,抛物线y=-x2-x+6与x轴交于A、B两点,与y轴交于点C.(1)求点A、B的坐标;(2)设点P是线段AC上一点,且S△ABP:S△BCP=1:3,求点P的坐标;(3)若直线y=x+a与抛物线交于M、N两点,当∠MON为锐角时,求a的取值范围.
如图,△ABC是直角三角形,∠ACB=90°.(1)动手操作:利用尺规作∠ABC的平分线,交AC于点O,再以O为圆心,OC的长为半径作⊙O(保留作图痕迹,不写作法);(2)综合运用:在你所作的图中,①判断AB与⊙O的位置关系,并证明你的结论;②若AC=12,tanOBC=,求⊙O的半径.