如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.
解不等式组,并把解集在数轴上表示出来.
先化简,再求值:,其中.
如图,已知点D在双曲线()的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q. (1)写出点D的坐标并求出抛物线的解析式; (2)证明∠ACO=∠OBC; (3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t. (1)判断MN与AC的位置关系; (2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积; (3)若△DMN是等腰三角形,求t的值.
某公交公司有A,B型两种客车,它们的载客量和租金如下表: 红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题: (1)用含x的式子填写下表: (2)若要保证租车费用不超过1900元,求x的最大值; (3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.