我们定义:平面内两条直线l1、l2相交于点O(l1与l2不垂直),对于该平面内任意一点P,如果点P到直线l1、l2的距离分别为a、b,那么有序实数对(a,b)就叫做点P的“平面斜角坐标”.如果常数m、n都是正数,那么在平面内与“平面斜角坐标”(m,n)对应的点共有 个.
如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=1,AB=,在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°,当点E是AB的中点时,线段DF的长度是 。
如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,则五边形ABCDE的面积等于 。
如图,在边长为3的正方形ABCD中,点M在边AD上,且AM=AD,延长MD至点E,使ME=MB,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为 。
如图,已知△ABC中,AB=AC,∠ADB=∠AEC,那么图中有 对全等三角形。
如图,已知△ABC,AB=AC=1,∠BAC=108°,点D在BC上,AD=BD,则AD的长是 ,cosB的值是 (结果保留根号)。