目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?
如图,在△ABC中,AB=AC.作∠BAC的角平分线,交BC于点D(尺规作图,保留痕迹);在AD的延长线上任取一点E,连接BE、CE. 求证:△BDE≌△CDE;当AE=2AD时,四边形ABEC是菱形.请说明理由.
为了了解某校九年级学生的体质健康状况,从该校九年级学生中随机抽取了40名学生进行调查.将调查结果绘制成如下统计表和统计图.请根据所给信息解答下列问题:]
补充完成频数统计表;求出扇形统计图的“优秀”部分的圆心角度数;若该校九年级共有200名学生,试估计该校体质健康状况达到良好及以上的学生总人数.
先化简:,再选择一个恰当的数作为x的值代入求值.
解不等式组,并判断x=是否为此不等式组的解.
如图23,已知抛物线与轴相交于A、B两点,其对称轴为直线,且与x轴交于点D,AO=1.填空:=_______。=_______,点B的坐标为(_______,_______):若线段BC的垂直平分线EF交BC于点E,交轴于点F.求FC的长;探究:在抛物线的对称轴上是否存在点P,使⊙P与轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由。