如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示: 该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元. (毛利润=(售价﹣进价)×销售量) (1)该商场计划购进甲、乙两种手机各多少部? (2) 通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF, (1)试说明:△FBD≌△ACD; (2)延长BF交AC于E,且BE⊥AC,试说明:CE=
如图,是一次函数y=kx+b的图象. (1)求这个一次函数的解析式? (2)试判断点P(1,-1)是否在这个一次函数的图象上? (3)求原点O到直线AB的距离.
已知平面直角坐标系中有一点M(m-1,2m+3) (1)当m为何值时,点M到x轴的距离为1? (2)当m为何值时,点M到y轴的距离为2?
已知,如图,四边形ABCD,∠A=∠B=Rt∠ (1)用直尺和圆规,在线段AB上找一点E,使得EC=ED,连接EC,ED(不写作法,保留作图痕迹) (2)在(1)的图形中,若∠ADE=∠BEC,且CE=3,BC=,求AD的长.