在平面直角坐标系中,对于平面内的任意一点(m,n),规定以下两种变化:①f(m,n)=(m,-n),如f(2,1)=(2,-1);②g(m,n)=(-m,-n),如g(2,1)=(-2,-1),按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]= .
若三角形的三条中位线分别为2cm、3cm、4cm,则原三角形的周长为。
分式方程的解是。
如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点B在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是;B2014的坐标是.
如图,菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=度.
将一元二次方程x2+2x﹣4=0用配方法化成(x+a)2=b的形式,则a=,b=.