在平面直角坐标系中,对于平面内的任意一点(m,n),规定以下两种变化:①f(m,n)=(m,-n),如f(2,1)=(2,-1);②g(m,n)=(-m,-n),如g(2,1)=(-2,-1),按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]= .
已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为.
若把代数式 化为的形式,其中m,k为常数,则m+k=.
分解因式:= .
若二次根式有意义,则x的取值范围是.
现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片()如图1,取出两张小卡片放入大卡片内拼成的图案如图2,再重新用三张小正方形卡片放入大卡片内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab-6,则小正方形卡片的面积是.