(本小题满分12分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若,求实数m的取值范围.
(本小题满分l0分)选修4—5:不等式选讲 已知函数 (1)当时,解不等式; (2)若存在,使得,成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (1)求圆的极坐标方程; (2)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
(本小题满分10分)选修4—1:几何证明选讲 如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.
(本小题满分12分)已知函数,其中常数. (1)当时,求函数的极大值; (2)试讨论在区间上的单调性; (3)当时,曲线上总存在相异两点,,使得曲线在点处的切线互相平行,求的取值范围.
已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且,点在该椭圆上. (1)求椭圆的方程; (2)过的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切圆的方程.