已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE丄CB,垂足为E.(1)判断直线DE与⊙O的位置关系,并说明理由; (2)已知CD=4,CE=3,求⊙O的半径.
(本小题满分12分) 设F是抛物线G:的焦点,过F且与抛物线G的对称轴垂直的直线被抛物线G截得的线段长为4. (Ⅰ)求抛物线G的方程; (Ⅱ)设A、B为抛物线G上异于原点的两点,且满足FA⊥FB,延长AF、BF分别交抛物线G于点C、D,求四边形ABCD面积的最小值.
(本小题满分12分) 如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=. (Ⅰ)求面ASD与面BSC所成二面角的大小; (Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小; (Ⅲ)求点D到平面SBC的距离.
.(本小题满分12分) 已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2. (Ⅰ)求椭圆的方程; (Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时, 求直线的方程.
(本小题满分12分) 设,求直线AD与平面的夹角。
(本小题满分10分) 已知命题若是的充分不必要条件,求的取值范围