某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
(本小题满分12分) 如图,矩形中,,,为上的点,且. (Ⅰ)求证:; (Ⅱ)求证;; (Ⅲ)求三棱锥的体积.
(本小题共12) 某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
(本小题满分10分) 在△中,所对的边分别为,,. (1)求; (2)若,求,,.
(本小题满分12分) 已知函数其中a为常数,且. (Ⅰ)当时,求在(e=2.718 28…)上的值域; (Ⅱ)若对任意恒成立,求实数a的取值范围.
(本小题满分12分) 已知椭圆()的左、右焦点分别为、,其中也是抛物线的焦点,是与在第一象限的交点,且. (1)求椭圆的方程; (2)已知菱形的顶点、在椭圆上,顶点、在直线上,求直线的方程.