在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
简答题(共2题,每小题3分,共6分)(1)根据生活经验,对代数式作出解释.(2) 两个有理数的和是负数,那么这两个数一定都是负数,这种说法对吗?如果不对,请举例说明?
计算及化简:
如图,在平面直角坐标系中,抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.(1)求的值;(2)求直线AC的函数解析式。(3)在线段上是否存在点,使与相似.若存在,求出点的坐标;若不存在,说明理由.
如图,线段经过圆心,交⊙O于点,点在⊙O上,连接,.是⊙O的切线吗?请说明理由.
(9分)如图,把△ABC置于平面直角坐标系中,请你按以下要求分别画图: (1)画出△ABC向下平移5个单位长度得到的△A1B1C1; (2)画出△ABC绕原点O逆时针旋转90º得到的△A2B2C2; (3)画出△ABC关于原点O对称的△A3B3C3.