下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1; (2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1; (3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.
居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:
请你根据图中提供的信息解答下列问题: (1)求本次被抽查的居民有多少人? (2)将图1和图2补充完整; (3)求图2中“C”层次所在扇形的圆心角的度数; (4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
先化简,再求值:(1-)÷,其中x=(+1)0+()-1•tan60°.
我们知道平行四边形有很多性质. 现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论. 【发现与证明】ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D. 结论1:B′D∥AC; 结论2:△AB′C与ABCD重叠部分的图形是等腰三角形. …… 请利用图1证明结论1或结论2(只需证明一个结论). 【应用与探究】在ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B′D. (1)如图1,若,则∠ACB=°,BC=; (2)如图2,,BC=1,AB′与边CD相交于点E,求△AEC的面积; (3)已知,当BC长为多少时,是△AB′D直角三角形?
如图1,在平面直角坐标系xOy中,点M为抛物线的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4. (1)求抛物线的函数关系式,并写出点P的坐标; (2)小丽发现:将抛物线绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由; (3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),. ①写出C点的坐标:C(,)(坐标用含有t的代数式表示); ②若点C在题(2)中旋转后的新抛物线上,求t的值.