请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2≤.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为________.
已知数列是等差数列,其前项和为,首项且,则 .
已知向量,,则______.
函数的图像可以由的图像向左平移 个单位得到.
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
(Ⅰ)写出频率分布直方图中的的值,并作出甲种酸奶日销售量的频率分布直方图;答:=________________;(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小.(只需写出结论).答:______________
将数列按如图所示的规律排成一个三角形表,并同时满足以下两个条件:①各行的第一个数构成公差为的等差数列;②从第二行起,每行各数按从左到右的顺序构成公比为的等比数列.若,则=_____________;第行的和=__________________________.