【2015高考陕西,理18】(本小题满分12分)如图,在直角梯形中,,,,,是的中点,是与的交点.将沿折起到的位置,如图. (Ⅰ)证明:平面; (Ⅱ)若平面平面,求平面与平面夹角的余弦值.
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点,交曲线于点,设.(1)将△(为坐标原点)的面积表示成的函数;(2)若在处,取得最小值,求此时的值及的最小值.
已知数列的前项和为,常数,且对一切正整数都成立。(Ⅰ)求数列的通项公式;(Ⅱ)设,,当为何值时,数列的前项和最大?
在△ABC中,角A,B,C的对边分别为a,b,c,.(1)求角C的大小;(2)若△ABC的外接圆直径为1,求的取值范围.
已知是同一平面内的三个向量,其中.(1)若,且,求:的坐标(2)若,且与垂直,求与的夹角.
已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.