(本题10分)某医药研究所开发一种新药.在试验药效时发现,如果成人按规定剂量服用,那么服药2h后血液中含药量最高,达到每毫升6μg(1μg=10-3mg),接着逐步衰减,10h后血液中含药量为每毫升3μg.若每毫升血液中含药量y(μg)随时间x(h)的变化如图所示,则当成人按规定剂量服药后:(1)分别求出0≤x≤2和x>2时,y与x之间的函数解析式;(2)如果每毫升血液中含药量为4μg或4μg以上时药物对疾病的治疗是有效的,那么这个有效时间是多长?
以下是小辰同学阅读的一份材料和思考: 五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③). 小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长. 参考上面的材料和小辰的思考方法,解决问题: 五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2. 具体要求如下: (1)设拼接后的长方形的长为a,宽为b,则a的长度为; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)
如图,CA、CB为⊙O的切线,切点分别为A、B.直径延长AD与CB的延长线交于点E.AB、CO交于点M,连接OB. (1)求证:∠ABO=∠ACB; (2)若sin∠EAB=,CB=12,求⊙O 的半径及的值.
据报道,历经一年半的调查研究,北京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0.035千克污染物.以下是相关的统计图、表: (1)请根据所给信息补全扇形统计图; (2)请你根据“2013年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01) (3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2013年机动车保有量已突破520万辆,请你通过计算,估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?
如图,△ABC中,BC >AC,点D在BC上,且CA=CD,∠ACB的平分线交AD于点F,E是AB的中点. (1)求证:EF∥BD ; (2)若∠ACB=60°,AC=8,BC=12,求四边形BDFE的面积.
列方程或方程组解应用题: 从A地到B地有两条行车路线: 路线一:全程30千米,但路况不太好; 路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的 平均车速的1.8倍,走路线二所用的时间比走路线一所用的时间少20分钟. 那么走路线二的平均车速是每小时多少千米?