(本题9分)某社区要调查社区居民双休日的学习状况,采用下列调查方式: ①从一幢高层住宅楼中选取200名居民; ②从不同住宅楼中随机选取200名居民; ③选取社区内200名在校学生. (1)上述调查方式最合理的是 ; (2)将最合理的调查方式得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2),在这个调查中,200名居民双休日在家学习的有 人; (3)请估计该社区2 000名居民双休日学习时间不少于4小时的人数.
某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率
关x的一元二次方程(x-2)(x-3)=m有两个实数根x1、x2,(1)求m的取值范围;(2)若x1、x2满足等式x1x2-x1-x2+1=0,求m的值.
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2)(1)求m的值和抛物线的关系式;(2)求不等式x2+bx+c>x+m的解集(直接写出答案).
在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
用适当的方法解下列方程:(每小题5分,共10分)(1);(2);