实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.
计算: (1)(﹣25)+(﹣35); (2)(﹣12)+(+3); (3)(+8)+(﹣7); (4)0+(﹣7).
计算: (1) (2)
某市是世界有机蔬菜基地,数10种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售. (1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式. (2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
如图,已知抛物线与x轴交于A、B两点,与y轴交于点C,点D在抛物线上,且A(-1,0),D(2,2). (1)求这条抛物线的解析式; (2)在y轴上是否存在点P,使以O、B、P为顶点的三角形与△AOC相似,若存在,请求出点P的坐标;若不存在,请说明理由; (3)小明在探索该图时提出了这样一个猜想:“直线AD平分∠CAB”,你认为小明的猜想正确吗?请说明理由.