学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、 “羽毛球”、 “乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是 ;学校在各班共随机选取了 名学生;(2)补全统计图中的数据:羽毛球 人、乒乓球 人、其他 人、其他 ﹪;(3)该校共有1100名学生,请计算喜欢“篮球”的学生人数.
如图,在四边形ABCD中, ∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△ACD是等腰三角形;(2)若AB=4,求CD的长.
如图所示,在△AFD和△BEC中,点A、E、F、C在同一条直线上,有下面四个论断:(A)AD=CB,(B)AE=CF,(C)∠B=∠D,(D)AD∥BC.请用其中三个作为条件,余下一个作为结论,遍一道证明题,并写出证明过程.
因式分解 (1) (2)
计算 (1) (2)
某商场销售一种西装和领带,西装每套定价500元,领带每条定价60元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款______________元.(用含x的代数式表示)若该客户按方案二购买,需付款_____________元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?