如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度.把Rt△OAB沿x轴正方向平移1个单位长度后得△AA1B.(1)求以A为顶点,且经过点B1的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.
解方程-=0.
解不等式组,并把解集在数轴上表示出来.
计算:+()-1+(2-π)0-()2.
如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①,②,③,④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连结PA、PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°) (1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD; (2)当动点P落在第②部分时,∠APB,∠PAC,∠PBD三个角之间的关系是:; (3)动点P在第③部分时,试探究∠APB,∠PAC,∠PBD三个角之间的关系,写出点P的具体位置和相应的结论,并选择一种结论加以说明.
如图,DE∥BC,∠BGF=∠CDE,试说明FG∥CD.