已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.
已知到直线l的距离等于a的所有点的集合是与直线l平行且距离为a的两条直线l1、l2(图①). (1)在图②的平面直角坐标系中,画出到直线的距离为1的所有点的集合的图形,并写出该图形与y轴交点的坐标; (2)试探讨在以坐标原点O为圆心,r为半径的圆上,到直线的距离为1的点的个数与r的关系; (3)如图③,若以坐标原点O为圆心,2为半径的圆上有两个点到直线的距离为1,则 b的取值范围为____________________________________________.
如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC. (1)求∠BAC的度数. (2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形. (3)若BD=6,CD=4,求AD的长.
如图,三角形ABC内接于圆O,AB=8,AC=6,D是AB边上的一点,P是优弧BAC的中点,连结PA,PB,PC,PD. (1)当AD的长度为多少时三角形PAD是以AD为底边的等腰三角形?并证明. (2)在(1)的条件下,若cos∠PCB=,求PA的长.
一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表: 解答下列问题: (1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是____________. (2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.
已知:如图,AB是⊙O的直径,点C.D为圆上两点,且,CF⊥AB于点F,CE⊥AD的延长线于点E. (1)试说明:DE=BF; (2)若∠DAB=60°,AB=8,求△ACD的面积.